

    

        Weatherflow Tempest

        v1.0.1



    



  

    Table of contents

    
      



            	Weatherflow Tempest


            	Changelog


            	License





  	Modules
    

    	WeatherflowTempest


    	WeatherflowTempest.Client


    	WeatherflowTempest.Client.Hub


    	WeatherflowTempest.Protocol


    	WeatherflowTempest.PubSub


    

  



      

    


  

    
Weatherflow Tempest
    

A library for handling the data from the LAN API for WeatherFlow weather stations.

Online docs found at https://hexdocs.pm/weatherflow_tempest.
Code and bug reports are at https://github.com/joshproehl/weatherflow_tempest.
Current Weatherflow UDP API version targeted is 171.
Supported devices:
	Air/Sky
	Tempest

Yes, the library is called "weatherflow tempest". Why it was created that way,
when it has always supported both Tempest and the earlier device, is lost to
time. Maybe because it was going to handle a veritable tempest of UDP packets?

  
    
    Installation
  


Add weatherflow_tempest to your list of dependencies in mix.exs:
def deps do
  [
    {:phoenix_pubsub, "~> 2.0"}, # Only required if using PubSub broadcasts
    {:weatherflow_tempest, "~> 1.0.0"}
  ]
end
and fetch your dependencies with
$ mix deps.get


  
    
    Usage
  


The intended way to use the library is to configure it to use a Phoenix.PubSub
instance, let it auto-start the client, and then subscribe to the data via
Phoenix.PubSub.
# In your config file:

config :weatherflow_tempest, pubsub_name: MyApp.PubSub
######################################
# Example PubSub usage in a LiveView #

def mount(_params, _session, socket) do
  WeatherflowTempest.PubSub.subscribe_to_udp_events()
  {:ok, socket}
end

def handle_info({{:weatherflow, event_type}, event_data}, socket) do
  IO.puts("Got a \#\{event_type\} message!")
  # Update your LiveView socket with the data!
  {:noreply, socket}
end
The choice to use Phoenix.PubSub was made because re-implementing PubSub to
the same level would be foolish, and also the primary use of this library is
very likely to display the data, probably in something like a Phoenix
LiveView.
However, if for some reason you need more direct usage of the data, using
callback functions is also supported. To do this you must configure the
library not to auto-start the Client, and then manually start and supervise
the Client.
# In your config file:

config :weatherflow_tempest, callbacks_only: true
#######################################
# Example usage via Callback function #

def handle_weatherflow_event(event_type, event_data) do
  # do something with the data received from the event
end

{:ok, pid} = WeatherflowTempest.Client.start_link([callback_func: &handle_weatherflow_event/2])
Full configuration and usage for both methods can be found in the
WeatherflowTempest.Client docs.
You can get the latest data heard from the station via
WeatherflowTempest.get_latest/0, which will return a map containing the most
recent data that has been heard from every Weatherflow device on the LAN, but
in practice you will probably want to use either the PubSub broadcasts or 
callback functions to handle events as they occur, and only use
WeatherflowTempest.get_latest/0 to seed initial values to your app. (When
starting a new LiveView page for example.)
Note
While it is technically possible to start the application with neither a
PubSub name configured nor a callback function given, it is not the intended
way to use the library.
In this case the Client will still start, but you will only be able to access
the data via the WeatherflowTempest.get_latest/0 function, and will not be
able to receive individual events.

The payload for each event is transformed from the UDP API strucure by
WeatherFlowTempest.Client, but in short it will be a map containing all data returned
by the API as key/value pairs. Examples of returned data can be found in 
Event Examples.



  

    
Changelog
    


  
    
    1.0.1
  


	Documentation updates, including fixing incorrect examples


  
    
    Breaking Changes
  


	Changed rain accumulation field in Sky observations to include units.
local_day_rain_accumulation became local_day_rain_accumulation_mm
	Changed battery field in Air observations to include units. 
It is now battery_volts, like the other device types use.


  
    
    1.0.0
  


	Update Elixir dependency to 1.10 or greater
	Documentation and code formatting updates
	Update for changes in Weatherflow API v171


  
    
    Enhancements
  


	Added :hub_sn key to the hub_status event. (Duplicates the :serial_number key
as a convenience to allow matching against :hub_sn on all event types.)
	Added ability to pass callback functions to the client that will be used
to handle parsed weatherflow events. (No longer strictly depends on pubsub)


  
    
    Breaking Changes
  


Version 1.0.0 has changed the API and will very likely break any existing uses
of the library. (This is why it's being released as 1.0.0, rather than 0.2.0)
	The structs returned by library have changed. Keys are standardized to use
atoms for all protocol keys, and only use strings for device serial numbers.
For example:
device_statuses: %{
    "AR-00000001" => %{
        firmware_revision: 23
    }
}

	Returned :uptime key to being integer second (String description that was
previously here is now in the :uptime_string field.)

	Renamed WeatherflowTempest.PubSub.subscribe_udp_events/0 to
WeatherflowTempest.PubSub.subscribe_to_udp_events/0 for linguistic clarity.

	Renamed the :windspeed_mps in a rapid_wind event to :wind_speed_mps for
consistency with other field names.

	Events are now emitted via the Phoenix.PubSub.broadcast method as
{{:weatherflow, event_name}, object} tuples, rather than using
%Phoenix.Socket.Broadcast{} struct, allowing the library to work correctly
outside of a Phoenix app.

	No longer automatically starts a Phoenix.PubSub if one is not defined
via config.

	No longer has Phoenix.PubSub as a :prod dependency, must be required by the
parent app if the PubSub is going to be used.



  
    
    0.1.0
  


	Initial Release




  

    
License
    

MIT License
Copyright (c) 2021 Josh Proehl
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.



  

    
WeatherflowTempest 
    



      
This module is merely used as a convenience for accessing the non-OTP
functions of the overall library.

      


      
        
          
            
            Summary
          
        


  
    Functions
  


    
      
        get_hub_serials()

      


        See WeatherflowTempest.Client.get_hub_serials/0.



    


    
      
        get_latest()

      


        See WeatherflowTempest.Client.get_latest/0.



    


    
      
        get_packet_stats()

      


        See WeatherflowTempest.Client.get_packet_stats/0.



    


    
      
        subscribe_to_udp_events()

      


        See WeatherflowTempest.PubSub.subscribe_to_udp_events/0.



    





      


      
        
          
            
Functions
          
        

        


  
    
      
      Link to this function
    
    get_hub_serials()



  


  

See WeatherflowTempest.Client.get_hub_serials/0.

  



  
    
      
      Link to this function
    
    get_latest()



  


  

See WeatherflowTempest.Client.get_latest/0.

  



  
    
      
      Link to this function
    
    get_packet_stats()



  


  

See WeatherflowTempest.Client.get_packet_stats/0.

  



  
    
      
      Link to this function
    
    subscribe_to_udp_events()



  


  

See WeatherflowTempest.PubSub.subscribe_to_udp_events/0.

  


        

      



  

    
WeatherflowTempest.Client 
    



      
Listens for packets from Weatherflow devices on the LAN, parses them, and
stores their latest state/update in its own state, while emitting the
parsed events via either a callback function or a Phoenix.PubSub broadcast.

  
    
    Changes from UDP API
  


It's important to note that we make some changes to the structure of the
results returned by the raw WeartherFlow UDP API:
	Events containing observations are flattened into a single observation
with all observation keys as top-level keys, rather than objects with
nested "obs" keys.
	Events containing lists of observations are emitted as multiple events. 
	Event names are altered to be more descriptive. See the
Event Examples section below for event names
and example return data.

It is unclear when the devices will actually return a list of observations in
a single "obs" list, and in testing with live devices it hasn't actually been
observed.
However, to accommodate the case that it might happen what we'll do is create
a unique event for every item in the observation list, and emit them in order
of ascending timestamp. These will be the flattened events described above.
This simplifies handling the events from the perspective of users of the
library, since it makes the expected output completely predictable.

  
    
    Usage
  


There are two ways to get data from the Client: 
	via a callback function
	via Phoenix.PubSub

You can use either, or both, depending on your needs.

  
    
    via Callback Function
  


A callback function is passed in to the start_link function as part of the
options list, under the "callback_func" key. (Multiple can be passed in, and
will all be called.)
The callback function will be called with two arguments:
	the event type, as an atom
	the event data, as a map

def handle_weatherflow_event(event_type, event_data) do
  # do something with the data received from the event
end

{:ok, pid} = WeatherflowTempest.Client.start_link([callback_func: &handle_weatherflow_event/2])
Blocking Callback Warning
Your callback functions will block the client from processing any further
data, so efforts should be made to keep them as lightweight as possible,
and hand off any complex processing.

It is worth noting that the callback function will not be notified of any
JSON parsing errors, only successfully parsed events.

  
    
    via Phoenix.Pubsub
  


If you'd prefer to receive events via Phoenix.PubSub, you can configure the
pubsub you'd like to use in your config file:
config :weatherflow_tempest, :pubsub_name, MyApp.PubSub
You must also start the WeatherflowTempest.Client, commonly as a child of
your Application Supervisor in application.ex:
def start(_type, _args) do
  children = [
    {WeatherflowTempest.Client, []},
  ]
  opts = [strategy: one_for_one, name: MyApp.Supervisor]
  Supervisor.start_link(children, opts)
end
Events are published as an {{:weatherflow, event_type}, event_data} struct,
on the topic "weatherflow:udp".
To subscribe to all events the convenience function
WeatherflowTempest.PubSub.subscribe_to_udp_events/0 is provided.
Handling all broadcast weatherflow events looks something like:
def handle_info({{:weatherflow, event_type}, event_data}, socket) do
  IO.puts("Got a #{event_type} message!")
  {:noreply, socket}
end
And of course you can match on specific event types as well.
Events are emitted to the PubSub in ascending timestamp order, but due to
the nature of PubSub if your usage requires that events be processed in
strict timeline order you may wish to use the callback function instead.

  
    
    Event Examples
  


Both methods of receiving events will receive the same event_types and the
same event_data objects, the only difference is how they are received by your
application.
Any given "hub" should only emit both :observation_air and :observation_sky
events, or only emit :observation_tempest events, depending on which product
it is. Keeping all three observation types for each hub allows the calling
application to easily handle both types of hubs simply by matching on the
event type or value in the %WeatherflowTempest.Client.Hub{} struct. 
(The alternative, having a single :observation event/field, would require that
we embed the product type in the data, which would be a bit less clear to
handle since each type of observation contains different fields.)
Note that we make no effort to coerce any data types from the API, since
the UDP API does not document it's data types. The examples shown below
use the same data as the examples in the Weatherflow API docs for each
event type. We assume that the values shown in their examples are
standardized, and if the API returns a float they would have shown 0.0.
Who knows though. So handle with care.
Examples of the map returned by all event types are documented below:
:event_precipitation
%{
  serial_number: "SK-00008453",
  hub_sn: "HB-00000001",
  timestamp: ~U[2017-04-27 19:47:25Z]
}
:event_strike
%{
  serial_number: "AR-00004049",
  hub_sn: "HB-00000001",
  timestamp: ~U[2017-04-27 19:47:25Z]
}
:rapid_wind
%{
  serial_number: "SK-00008453",
  hub_sn: "HB-00000001",
  timestamp: ~U[2017-04-27 19:47:25Z],
  wind_speed_mps: 2.3,
  wind_direction_degrees: 128
}
:observation_air
%{
  serial_number: "AR-00004049",
  hub_sn: "HB-00000001",
  firmware_revision: 17,
  timestamp: ~U[2017-04-26 00:00:35Z],
  station_pressure_MB: 835.0,
  air_temperature_C: 10.0,
  relative_humidity_percent: 45,
  lightningstrike_count: 0,
  lightningstrike_avg_distance_km: 0,
  battery: 3.46,
  reportinterval_mintues: 1
}
:observation_sky
%{
  serial_number: "SK-00008453",
  hub_sn: "HB-00000001",
  firmware_revision: 29,
  timestamp: ~U[2017-04-27 19:29:00Z],
  illuminance_lux: 9000,
  uv_index: 10,
  rain_accumulated_mm: 0.0,
  wind_lull_ms: 2.6,
  wind_avg_ms: 4.6,
  wind_gust_ms: 7.4,
  wind_direction_degrees: 187,
  battery_volts: 3.12,
  reportinterval_minutes: 1,
  solar_radiation_wm2: 130,
  local_day_rain_accumulation: nil,
  precipitation_type: :none,
  wind_sample_interval_seconds: 3
}
Note that the "precipitation_type" field is parsed to a human-readable format
rather than the strict integer format used by the API. Values returned will
be one of :none, :rain, :hail, or :rain_plus_hail
:observation_tempest
%{
  serial_number: "ST-00000512",
  hub_sn: "HB-00013030",
  firmware_revision: 129,
  timestamp: ~U[2020-05-08 14:36:54Z],
  wind_lull_ms: 0.18,
  wind_avg_ms: 0.22,
  wind_gust_ms: 0.27,
  wind_direction_degrees: 144,
  wind_sample_interval_seconds: 6,
  station_pressure_MB: 1017.57,
  air_temperature_C: 22.37,
  relative_humidity_percent: 50.26,
  illuminance_lux: 328,
  uv_index: 0.03,
  solar_radiation_wm2: 3,
  precip_accumulated_mm: 0.000000,
  precipitation_type: :none,
  lightningstrike_avg_distance_km: 0,
  lightningstrike_count: 0,
  battery_volts: 2.410,
  reportinterval_minutes: 1
}
Note that the "precipitation_type" field is parsed to a human-readable format
rather than the strict integer format used by the API. Values returned will
be one of :none, :rain, :hail, or :rain_plus_hail
:device_status
%{
  serial_number: "AR-00004049",
  hub_sn: "HB-00000001",
  timestamp: ~U[2017-11-16 18:12:03Z],
  uptime: 2189,
  uptime_string: "36 minutes, 29 seconds",
  voltage: 3.50,
  firmware_revision: 17, 
  rssi: -17,
  hub_rssi: -87,
  sensor_status: %{
    sensors_okay: true,
    lightning_failed: false,
    lightning_noise: false,
    lightning_disturber: false,
    pressure_failed: false,
    temperature_failed: false,
    rh_failed: false,
    wind_failed: false,
    precip_failed: false,
    light_uv_failed: false,
    power_booster_depleted: false,
    power_booster_shore_power: false,
  },
  debug: false,
}
:hub_status
%{
  hub_sn: "HB-00000001",
  serial_number: "HB-00000001",
  firmware_revision: "35",
  uptime: 1670133,
  uptime_string: "2 weeks, 5 days, 7 hours, 55 minutes, 33 seconds",
  rssi: -62,
  timestamp: ~U[2017-05-25 15:04:51Z],
  reset_flags: ["Brownout reset", "PIN reset", "Power reset"],
  seq: 48,
  fs: :not_parsed__internal_use_only,
  radio_stats: %{
    version: 2,
    reboot_count: 1,
    i2c_bus_error_count: 0,
    radio_status: "Radio Active",
    radio_network_id: 2839
  },
  mqtt_stats: :not_parsed__internal_use_only,
}

      


      
        
          
            
            Summary
          
        


  
    Functions
  


    
      
        child_spec(init_arg)

      


        Returns a specification to start this module under a supervisor.



    


    
      
        get_hub_serials()

      


        Get a list of serial numbers of Weatherflow Hubs that have been heard from.



    


    
      
        get_latest()

      


        Get all the latest data that the client has heard.



    


    
      
        get_packet_stats()

      


        Get the total number of UDP packets and errors received by the client.



    





      


      
        
          
            
Functions
          
        

        


  
    
      
      Link to this function
    
    child_spec(init_arg)



  


  

Returns a specification to start this module under a supervisor.
See Supervisor.

  



  
    
      
      Link to this function
    
    get_hub_serials()



  


  

      

          @spec get_hub_serials() :: [String.t()]


      


Get a list of serial numbers of Weatherflow Hubs that have been heard from.

  
    
    Examples
  


iex> WeatherflowTempest.Client.get_hub_serials()
["HUB_SERIAL_ONE", "HUB_SERIAL_TWO"]

  



  
    
      
      Link to this function
    
    get_latest()



  


  

      

          @spec get_latest() :: %{required(String.t()) => WeatherflowTempest.Client.Hub.t()}


      


Get all the latest data that the client has heard.
Note that the resulting WeatherflowTempest.Client.Hub struct may contain
empty fields if the client hasn't heard certain types of events yet.

  
    
    Examples
  


iex> WeatherflowTempest.Client.get_latest()
%{
  "HUB_SERIAL_ONE" => %WeatherflowTempest.Client.Hub{...}
}

  



  
    
      
      Link to this function
    
    get_packet_stats()



  


  

      

          @spec get_packet_stats() :: map()


      


Get the total number of UDP packets and errors received by the client.

  
    
    Examples
  


iex> WeatherflowTempest.Client.get_packet_stats()
%{
  packets_parsed: 123,
  packet_errors: 0
}

  


        

      



  

    
WeatherflowTempest.Client.Hub 
    



      
A struct representing the most recent data and status of a particular hub.
Note that if a particular observation type hasn't yet been heard for this
hub then some keys may be empty maps.

      


      
        
          
            
            Summary
          
        


  
    Types
  


    
      
        t()

      


    





      


      
        
          
            
Types
          
        

        


  
    
      
      Link to this type
    
    t()



  


  

      

          @type t() :: %WeatherflowTempest.Client.Hub{
  device_statuses: map(),
  event_precipitation: map(),
  event_strike: map(),
  hub_status: map(),
  observation_air: map(),
  observation_sky: map(),
  observation_tempest: map(),
  rapid_wind: map()
}


      



  


        

      



  

    
WeatherflowTempest.Protocol 
    



      
The Weatherflow Protocol has a lot of magic fields. This parses and converts
them to make the returned objects more intelligible.
Byte-effecient arrays are unpacked into named fields based on the protocol docs
published by Weatherflow.
The following field standardizations are made to all event types:
	"type" fields are removed. (Use the whole {:type, %{}} tuple)

	"evt" fields containing the raw un-parsed event data are removed, and the data
from those fields is flattened into a single event map.

	"uptime" fields containing seconds-as-integers are given human-readable string
representations such as "1 week, 4 days, 3 hours, 16 minutes", which are
placed in an :uptime_string field

	"timestamp" field containing the epoch time are converted to DateTime

	All fields are converted to use atoms as keys. The only string keys used will
be device serial numbers, i.e.:
  device_statuses: %{
      "AR-00000001" => %{
          firmware_revision: 23
      }
  }

	:hub_sn key is added to the hub_status message type, allowing easy pattern
matching for all events from a given hub.



  
    
    Notes:
  


	The hub_status event returns a firmware_revision as a string rather than an
integer, according to the API examples. We do not convert that integer to
a string since it's unclear what Weatherflow's intent here is. Perhaps there
will be a firmware revision "37beta2"?
	The actual data types of the fields is not given by the Weatherflow UDP API
documentation. We infer which values are floats and which are ints based on
their examples only. There is no guarantee that this is correct. Did they
show "0" for an example but may actually return "0.1"? Because of this we
will not attempt to coerce any values or parse anything that we aren't
absolutely certain of.


      


      
        
          
            
            Summary
          
        


  
    Functions
  


    
      
        handle_json(error_tuple)

      


        Accepts the result tuple of Jason.decode()
If the JSON could not be decoded bubble the error up to be handled by the
WeatherflowTempest.Client, otherwise parse the event types defined by
the Weatherflow spec.



    





      


      
        
          
            
Functions
          
        

        


  
    
      
      Link to this function
    
    handle_json(error_tuple)



  


  

      

          @spec handle_json({atom(), map()}) :: map()


      


Accepts the result tuple of Jason.decode()
If the JSON could not be decoded bubble the error up to be handled by the
WeatherflowTempest.Client, otherwise parse the event types defined by
the Weatherflow spec.
Returns a tuple containing an atom matching the event "type" field, followed
by the parsed object as a map. (Because it is cleaner to pattern match the
against the tuple than against a key in the map, and makes returning ar error
tuple the easy way to bubble up any errors.)
Some liberties are taken with renaming fields and altering the resulting
structure for clarity. The "type" key is removed from all result maps, as the
intention is to hold on to the entire tuple if you need to pass it around.
For evt_precip, evt_strike, and rapid_wind messages we flatten the data into
a single map for convenience. 
For example, a rapid_wind event from the UDP API looks like this:
  {
    "serial_number": "AR-00004049",
    "type":"rapid_wind",
    "hub_sn": "HB-00000001",
    "ob":[1493322445,2.3,128]
  }
and we will parse that into:
  {:rapid_wind,
   %{
    serial_number: "AR-00004049",
    hub_sn: "HB-00000001",
    timestamp: ~U[2017-04-27 19:47:25Z],
    wind_speed_mps: 2.3,
    wind_direction_degrees: 128
   }
  }
However, the obs_air, obs_sky, and obs_st event types can return a list of
observations, although they most often return just a single event.
Because of this those observations are not flattened into a single map,
and are instead returned as a list, sorted by ascending timestamp.
They are returned under the :observations key, rather than the "obs" used
by the API, for the sake of clarity.
The API doesn't cearly define what would cause the devices to return a list
of observations rather than a single one, so we can't make any assumptions
here about de-duplication or repeated events unfortunately, and will simply
parse and return whatever the API provides. Do note however that the logic
in WeatherflowTempest.Client strips out all but the most recent event,
so if you'd like to actually deal with a device that is sending lists of
observations you'll need to use WeatherflowTempest.Protocol directly.

  


        

      



  

    
WeatherflowTempest.PubSub 
    



      
Publishes events via Phoenix.PubSub.
In order to use Phoenix.PubSub broadcasting you must ensure that your
application also require phoenix_pubsub in its deps.
Configure the pubsub you'd like to use in the appropriate config file:
config :weatherflow_tempest, :pubsub_name, MyApp.PubSub
Events are published as an {{:weatherflow, event_type}, event_data} struct,
on the "weatherflow:udp" topic. 
If no pubsub_name is defined in the config, then no PubSub messages are
broadcast.
The tuple {:weatherflow, event} is used as they key in order to make it easy
to match against all Weatherflow related events if your pubsub subscriber
also receives messages from other pubsub topics.
The event is an expanded version of the event type from the weatherflow API,
and the parsed object as the payload. 
Full documentation for the event names and structures is available in the
WeatherflowTempest.Client module.

      


      
        
          
            
            Summary
          
        


  
    Functions
  


    
      
        get_pubsub_name()

      


        Return the name of the pubsub we're using.
Might be useful if you want to subscribe to the UDP events yourself, or
check on which pubsub is being used at runtime



    


    
      
        subscribe_to_udp_events()

      


        Convenience method to subscribe to the correct pubsub name and channel to
receive all parsed UDP events received as pubsub messages.



    





      


      
        
          
            
Functions
          
        

        


  
    
      
      Link to this function
    
    get_pubsub_name()



  


  

Return the name of the pubsub we're using.
Might be useful if you want to subscribe to the UDP events yourself, or
check on which pubsub is being used at runtime

  



  
    
      
      Link to this function
    
    subscribe_to_udp_events()



  


  

Convenience method to subscribe to the correct pubsub name and channel to
receive all parsed UDP events received as pubsub messages.

  


        

      



  OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();




